
Cole-Hopf-like transformation for Schrödinger equations containing complex nonlinearities

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 1943

(http://iopscience.iop.org/0305-4470/35/8/311)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 02/06/2010 at 10:42

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 1943–1959 PII: S0305-4470(02)27372-2

Cole–Hopf-like transformation for Schrödinger
equations containing complex nonlinearities

G Kaniadakis and A M Scarfone

Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
and
Istituto Nazionale di Fisica della Materia, Unitá del Politecnico di Torino, Italy
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Abstract
We consider systems which conserve the particle number and are described
by Schrödinger equations containing complex nonlinearities. In the case of
canonical systems, we study their main symmetries and conservation laws. We
introduce a Cole–Hopf-like transformation both for canonical and noncanonical
systems, which changes the evolution equation into another one containing
purely real nonlinearities, and reduces the continuity equation to the standard
form of the linear theory. This approach allows us to treat, in a unifying scheme,
a wide variety of canonical and noncanonical nonlinear systems, some of them
already known in the literature.

PACS numbers: 02.30.Jr, 03.50.-z, 03.65.-w, 05.45.-a, 11.30.Na, 11.40.Dw

1. Introduction

Over the last few decades many nonlinear Schrödinger equations (NLSEs) have been proposed
in order to test the fundamental postulates of quantum mechanics, for instance, the Bialynicki-
Birula–Mycielski equation [1], the Kostin equation [2] and the Gisin equation [3] among many
others [4]. In [5] a wide class of NLSEs for finite-dimensional quantum systems was selected
in order to preserve the homogeneity principle of the original Schrödinger equation, with the
superposition principle being destroyed by the nonlinear terms.

Many of the NLSEs proposed in the literature contain complex nonlinearities. For
instance, the Doebner–Goldin (DG) equations [6–8] were introduced as the most general class
of Schrödinger equations, compatible with the Fokker–Planck equation for the probability
density ρ = |ψ |2 namely ∂ρ/∂t + ∇ · j0 = D�ρ, j0 being the standard quantum current
and D a positive diffusion coefficient. The importance of this class of evolution equations is
that it is founded on the grounds of the group theory: the nonlinear terms were derived from
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the representation analysis of the Diff(R3) group which was proposed as a universal quantum
kinematical group [9].

In addition, a large number of NLSEs with complex nonlinearities have been proposed in
order to describe some phenomenologies in condensed matter physics. For instance, in [10] a
NLSE with a nonlinearity of the type a1|ψ |2ψ + a2|ψ |4ψ + ia3∂x(|ψ |2ψ) + (a4 + ia5)∂x |ψ |2ψ
is introduced to describe a single-mode wave propagation in a Kerr dielectric guide. Another
example is the generalized Ginsburg–Landau equation [11]. This equation contains the
nonlinearity a1|ψ |2ψ + ia2ψ + ia3∂xxψ + ia4|ψ |2ψ [12] which takes into account pumping
and dumping effects of the nonlinear media and can be used to describe dynamical modes
of plasma physics, hydrodynamics and also solitons in optical fibres (see [13] and references
therein). Finally, complex nonlinearities in Schrödinger equations are also used to describe the
propagation of high-power optical pulses in ultrashort soliton communication systems [14,15],
incoherent solitons [16, 17], and multi-channel bit-parallel-wavelength optical fibre networks
[18], among others.

In this paper we consider the most general class of NLSEs conserving the quantity
N = ∫ |ψ |2 dnx:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + (W + iW)ψ (1.1)

where the realW and imaginary W parts of the complex nonlinearity are smooth functions of the
fieldsψ,ψ∗ and their spatial derivatives of any order. Whenψ is written in polar representation
ψ = ρ1/2 exp(iS/h̄), equation (1.1) is split into two nonlinear partial differential equations for
the real fields ρ and S:

∂ρ

∂t
+ ∇ ·

(∇S

m
ρ + F

)
= 0 (1.2)

∂S

∂t
+

(∇S)2

2m
+ W + Uq = 0 (1.3)

where

Uq = − h̄2

4m

�
√
ρ√
ρ

(1.4)

is the quantum potential [19] and the real functional F is related to W through

W = h̄

2ρ
∇ · F (1.5)

as the particle number conservation requires. It is easy to recognize that equation (1.2) is
a nonlinear continuity equation, which involves only the term W , while equation (1.3) is a
nonlinear Hamilton–Jacobi-like equation involving only the term W .

In the Calogero picture [20], the system (1.2), (1.3) is C-integrable if there exists a
transformation of the dependent or/and independent variables t → T , x → X, ρ → R,
S → S which transforms equations (1.2), (1.3) into

∂R

∂T
+ ∇ ·

(
∇S
m

R

)
= 0 (1.6)

∂S
∂T

+
(∇S)2

2m
+ Uq = 0 (1.7)

∇ and Uq being the gradient and the quantum potential in the new variables.
Equations (1.6), (1.7) constitute the well known hydrodynamic representation of the standard
linear Schrödinger equation.
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The principal aim of this paper is to introduce a nonlinear transformation for the field S:
S → S, in order to reduce equation (1.2) to the standard form of the linear theory (1.6). As a
consequence of this transformation, the evolution equation (1.1) transforms into another one
containing a purely real nonlinearity. Moreover, the current, when expressed in terms of the
new field φ = ρ1/2 exp(iS/h̄), reduces to the standard bilinear form of the linear Schrödinger
theory.

The paper is organized as follows. In section 2, we introduce a general class of (n + 1)
canonical NLSEs, invariant over the action of the U(1) group. In section 3, starting from
the Noether theorem, we consider the main symmetries and related conserved quantities of
the canonical system. In section 4, we introduce a Cole–Hopf-like transformation which
eliminates the imaginary part of the nonlinearity in the evolution equation, while in section 5,
the same transformation is considered in the case of noncanonical systems. In section 6, in the
framework of the approach developed in the previous sections, we treat, in a unifying context,
some NLSEs already known in the literature, in order to show that all the transformations
introduced by the various authors to study these equations can be obtained as particular cases
of the transformation proposed here. Finally, some conclusions and remarks are reported in
section 7.

2. The canonical model

Let us consider the class of canonical NLSEs described by the Lagrangian density

L = i
h̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m
|∇ψ |2 − U [ψ∗, ψ] (2.1)

where ∇ ≡ (∂1, . . . , ∂n) is the n-dimensional gradient operator. The last term in the rhs
of equation (2.1) is the nonlinear potential which we assume to be a real smooth function
of the fields ψ and ψ∗ and their spatial derivatives. Here and in the following, we use the
notation U [a] to indicate the dependence of U on the field a and its spatial derivative of any
order. We deal with dynamical systems described by equation (2.1) which are invariant under
transformations belonging to the U(1) group. As we show in the next section, this condition
imposes a constraint on the form of the nonlinear potential U .

We start from the action

A =
∫

L dnx dt (2.2)

and observe that the evolution equation of the field ψ is given by
δA
δψ∗ = 0. (2.3)

The functional derivative is defined through [21]

δ

δa

∫
G[a] dnx =

∑
[k=0]

(−1)kDIk

[
∂G[a]

∂(DIk a)

]
(2.4)

with DIk ≡ ∂k/(∂x
i1
1 . . . xin

n ) and
∑

[k=0] ≡ ∑∞
k=0

∑
Ik

. The sum
∑

Ik
is over the multi-index

Ik ≡ (i1, i2, . . . , in) where 1 � p � n, 0 � ip � k and
∑

ip = k.
Equation (2.3) assumes the form

δ

δψ∗

∫
i
h̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
dnx dt

= δ

δψ∗

∫
h̄2

2m
|∇ψ |2 dnx dt +

δ

δψ∗

∫
U [ψ∗, ψ] dnx dt (2.5)
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which, after performing the functional derivatives, transforms to the following NLSE:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ +

δ

δψ∗

∫
U [ψ∗, ψ] dnx dt (2.6)

where � ≡ ∂2
1 + · · · + ∂2

n is the Laplacian operator. Equation (2.6) can finally be written in the
form

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + �[ρ, S]ψ (2.7)

where the complex nonlinearity

�[ρ, S] = W [ρ, S] + iW[ρ, S] (2.8)

has real W [ρ, S] and imaginary W[ρ, S] part defined by

W [ρ, S] = δ

δρ

∫
U [ρ, S] dnx dt (2.9)

W[ρ, S] = h̄

2ρ

δ

δS

∫
U [ρ, S] dnx dt (2.10)

where ρ and S are the hydrodynamic fields related to the wavefunction ψ through [19, 22]

ψ(x, t) = ρ1/2(x, t) exp

[
i

h̄
S(x, t)

]
. (2.11)

3. Symmetries

In this section we study the main symmetries and conserved quantities of the system described
by the Lagrangian (2.1).

Let us consider the U(1) invariance condition. The variation δεψ = iεψ , with ε an
infinitesimal real parameter, implies the following variation on the action:

δεA = −εh̄

∫
∂

∂S
U [ρ, S] dnx dt. (3.1)

Taking into account the Noether theorem [23] we can also write the variation δεA in the form

δεA = −εh̄

∫
∂µjµ[ψ∗, ψ] dnx dt. (3.2)

By comparing equations (3.1) and (3.2) we obtain

∂ρ

∂t
+ ∇ · j = ∂U

∂S
(3.3)

with ρ = j0. Equation (3.3) is not a continuity equation because the Lagrangian (2.1), for
a general nonlinear potential U [ρ, S], is not U(1)-invariant. In appendix B we show that
U(1) symmetry can be restored if one assumes that the nonlinear potential U [ρ, S] depends
on S only through its spatial derivative, modulo a total derivative term, which does not change
the dynamics of the system (null Lagrangian). As a consequence, the rhs of equation (3.3)
vanishes and it becomes a continuity equation for the conserved density ρ. Thus, the U(1)
invariance limits the class of nonlinear potentials appearing in equation (2.1). In the following,
we consider only U(1)-invariant systems, where the functional U [ρ, S] depends on S through
its spatial derivative. For this class of systems, equation (3.3) becomes

∂ρ

∂t
+ ∇ · j = 0. (3.4)
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The conserved quantity associated with the continuity equation (3.4) is

N =
∫

ρ dnx (3.5)

The expression of j is obtained in appendix A, and is given by

ji = ∂iS

m
ρ +

∑
[k=0]

(−1)k

f
Ik+1
i

DIk

[
∂U [ρ, S]

∂(Di,Ik S)

]
(3.6)

where

f
Ik+1
i = n −

n∑
r 
=i

δ0,mr
(3.7)

for Ik+1 = (m1,m2, . . . , mn) with 1 � r � n, 0 � mr � n and
∑

r mr = k + 1.
Note that expression (3.6) of j can also be written (see appendix A) in the form

ji = ∂iS

m
ρ +

δ

δ(∂iS)

∫
U [ρ, S] dnx dt. (3.8)

Equation (3.8) can be obtained starting directly from equation (2.7) after adopting the
hypothesis that U [ρ, S] depends on the field S only through its spatial derivatives as required
from the U(1) symmetry.

In the following we consider the main space–time symmetries of the Lagrangian (2.1).
We note that U [ρ, S] depends on the variables x and t only through the fields ρ and S, thus
the system is invariant over space–time translations. From the Noether theorem we have

∂Tµ

∂t
+ ∇ · Tµ = 0 (3.9)

where Tµ ≡ T0µ; (Tµ)i ≡ Tiµ with µ = 0, . . . , 3. The components of the energy–momentum
tensor Tµν (see appendix A) are given by

T00 = h̄2

2m
|∇ψ |2 + U [ρ, S] (3.10)

T0j = i
h̄

2
(ψ∗∂jψ − ψ∂jψ

∗) (3.11)

Ti0 = − h̄2

2m
(∂iψ

∗∂tψ − ∂iψ∂tψ
∗) +

∑
[k=0]

k∑
[p=0]

(−1)pBIk
j,Iq

DIq

×
{
DIp

[
∂U [ρ, S]

∂(Di,Ik ρ)

]
∂tρ + DIp

[
∂U [ρ, S]

∂(Di,Ik S)

]
∂tS

}
(3.12)

Tij = − h̄2

2m
(∂iψ

∗∂jψ + ∂jψ
∗∂iψ) + δijL −

∑
[k=0]

k∑
[p=0]

(−1)pBIk
j,Iq

DIq

×
{
DIp

[
∂U [ρ, S]

∂(Di,Ik ρ)

]
∂jρ +DIp

[
∂U [ρ, S]

∂(Di,Ik S)

]
∂jS

}
. (3.13)

From equations (3.10) and (3.11) we obtain the conserved quantities

E =
∫ [

h̄2

2m
|∇ψ |2 + U [ρ, S]

]
dnx (3.14)

P = −i
h̄

2

∫
(ψ∗∇ψ − ψ∇ψ∗) dnx (3.15)

which are, respectively, the total energy and the linear momentum of the system. We can see
that U [ρ, S] modifies the expression of the energy while the momentum maintains the form
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of the linear theory. From equations (3.12) and (3.13) we see that the presence of U [ρ, S] also
modifies the expressions of the fluxes associated to E and P .

Note that if the energy–momentum tensor is symmetric in the spatial indices Tij = Tji ,
the potential U [ρ, S] is invariant over the action of the orthogonal group SO(n). In this way
we can define n(n − 1)/2 conserved quantities

La1,...,an−2 = εa1,...,an−2,i,j

∫
xiT0j dnx (3.16)

where εa1,...,j is the n-rank totally antisymmetric tensor defined as ε1,...,1 = 1. For n = 3 we
recognize the well known conserved components of the angular momentum.

Finally, we look at the Galilei invariance. We recall that if the system admits this symmetry,
the corresponding generator

G = P t − mNxc (3.17)

is conserved, namely

∂G

∂t
= 0 (3.18)

where the linear momentum is given by

P =
∫

ρ∇S dnx (3.19)

while the mass centre vector is defined as

xc = 1

N

∫
ρx dnx. (3.20)

We consider now the Ehrenfest relation
∂xc

∂t
= 1

N

∫
j dnx (3.21)

which can be obtained from equations (3.4) and (3.20). We note the formal similarity
with the corresponding relation of the linear theory. Here the expression of j is given by
equation (3.6) and depends on the form of the nonlinear potential U [ρ, S]. Taking into account
the conservation of P , and after assuming uniform conditions, from equation (3.17) we obtain

∂Gi

∂t
= −m

∑
[k=0]

(−1)k(f Ik
i )−1

∫
DIk

[
∂U [ρ, S]

∂(Di,Ik S)

]
dnx. (3.22)

Equation (3.22) shows that the presence of U [ρ, S] breaks the Galilei invariance, which can
be restored if W = 0 as we can verify easily by using equation (2.10).

4. A Cole–Hopf-like transformation

Let us introduce a unitary transformation of the field ψ :

ψ(x, t) → φ(x, t) = U[ρ, S]ψ(x, t) (4.1)

with U∗ = U−1 so that

|ψ |2 = |φ|2 = ρ. (4.2)

The functional U is chosen to eliminate the imaginary part of the NLSE (2.7) and, at the same
time, to transform the current j, given by equation (3.6), into another current j → J having
the canonical form

J = ∇S
m

ρ (4.3)
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with S being the phase of the new field φ:

φ(x, t) = ρ1/2(x, t) exp

[
i

h̄
S(x, t)

]
. (4.4)

We write U[ρ, S] as follows:

U[ρ, S] = exp

(
i

h̄
σ [ρ, S]

)
(4.5)

and observe that the generator σ [ρ, S] is a real functional which allows us to calculate S
starting from S:

S = S + σ [ρ, S]. (4.6)

The generator σ [ρ, S] can be obtained easily by combining equations (3.8), (4.3) and (4.6):

∂iσ [ρ, S] = m

ρ

δ

δ(∂iS)

∫
U [ρ, S] dnx dt. (4.7)

Equation (4.7) imposes a condition on the form of the nonlinear potential which can be obtained
using the relation ∂ijσ = ∂jiσ :[

∂i

(
1

ρ

δ

δ(∂jS)

)
− ∂j

(
1

ρ

δ

δ(∂iS)

)]∫
U [ρ, S] dnx dt = 0. (4.8)

Condition (4.8) selects the potentials U [ρ, S] and the nonlinear systems where we can perform
the transformation (4.1). In the case of one-dimensional systems the transformation (4.1) is
always accomplished.

It is easy to verify that the transformation (4.1) reduces the evolution equation (2.7) to the
following NLSE:

ih̄
∂φ

∂t
= − h̄2

2m
�φ + W̃ [ρ,S]φ (4.9)

which now contains only the real nonlinearity W̃ [ρ,S] given by

W̃ [ρ,S] = W +
(∇σ)2

2m
− J · ∇σ

ρ
− ∂σ

∂t
(4.10)

where W ≡ W [ρ, S[ρ,S]]. The phase S appears in equation (4.9) only through its spatial
derivatives; consequently the arbitrary integration constant, deriving from the definition of U ,
does not produce effects and can be posed equal to zero. Note that W̃ depends implicitly on
the field S. In fact, equation (4.6) defines S as a function of ρ and S.

From equation (4.9) we can obtain the following continuity equation:

∂ρ

∂t
+ ∇ · J = 0 (4.11)

where the current J now takes the standard expression of the linear quantum mechanics given
by equation (4.3).

In conclusion, we have introduced a nonlinear and nonlocal transformation which makes
real the complex nonlinearity in equation (2.7) and at the same time reduces the continuity
equation (3.3) to the bilinear standard form. The price that we pay is that equation (4.9) is not
generally canonical because the transformation (4.1) is itself not canonical.

We briefly discuss the conditions under which the system described by equation (4.9)
becomes a canonical one. The canonicity of the system implies the existence of a nonlinear
potential Ũ from which we can derive the nonlinearity of equation (4.9).
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We observe that the absence of the imaginary part W̃ in the nonlinearity of equation (4.9)
requires that Ũ depends only on the field ρ and its spatial derivatives. Consequently, W̃ is a
functional of the field ρ linked with Ũ (ρ) through the relation

W̃ [ρ] = δ

δρ

∫
Ũ [ρ] dnx dt (4.12)

which, after performing the functional derivative, assumes the form

W̃ [ρ] =
∑
[k=0]

(−1)kDIk

[
∂Ũ [ρ]

∂(DIkρ)

]
. (4.13)

In section 6 we consider a few particular systems where condition (4.13) is satisfied and their
canonicity is preserved.

5. Noncanonical systems

In this section we consider the transformation introduced previously and study its applicability
in the case of noncanonical systems.

For noncanonical systems, the evolution equation is given by equation (1.1), where
W [ρ, S] is now an arbitrary functional, while W[ρ,S] assumes the form

W[ρ, S] = h̄

2ρ
∇ · F [ρ, S] (5.1)

enforced by the conservation of N = ∫
ρ dnx, with F [ρ, S] an arbitrary functional, and the

current is given by

j = ∇S

m
ρ − F [ρ, S]. (5.2)

It is easy to verify that the transformation (4.1) eliminates the imaginary part of the
nonlinearity in the motion equation, which transforms again into equations (4.9), (4.10). The
generator σ of the transformation ψ → φ is related to F through

∇σ [ρ, S] = m

ρ
F [ρ, S] (5.3)

while the condition

∇ × F

ρ
= 0 (5.4)

permits the definition of the transformation in any n > 1 spatial dimension. This condition
constrains only the form of W , differently to the canonical case, where the condition (4.8)
constrains the form of the nonlinear potential U and, consequently, both W and W in the
motion equation.

6. Examples

In this section we consider some equations already known in the literature in the framework of
the approach developed here. We show how the nonlinear transformations proposed to study
the various NLSEs can be obtained in a unified way as particular cases of the transformation
given by equation (4.1).
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(i) As a first trivial example we consider the canonical NLSE introduced in [16]:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ +

(
βρ − α

h̄
· ∇S

)
ψ +

i

2
(α · ∇ log ρ)ψ (6.1)

with β and α real and constant arbitrary parameters. This equation can be derived from a
Lagrangian containing the following nonlinear potential:

U [ρ, S] = β

2
ρ2 − ρ

h̄
α · ∇S. (6.2)

The transformation with generator σ , given by

σ = −m

h̄
α · x (6.3)

produces the new canonical evolution equation

ih̄
∂φ

∂t
= − h̄2

2m
�φ + βρφ +

mα2

2h̄2 φ (6.4)

with associated nonlinear potential

Ũ [ρ] = β

2
ρ2 +

mα2

2h̄
ρ. (6.5)

Equation (6.4) can be reduced to the cubic NLSE by changing the phase S → S − 3mα2t/2h̄.

(ii) Let us consider as our second example of canonical NLSE the Chen–Lee–Liu equation [24]:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
− α

h̄

∂S

∂x
ρψ + i

α

2

∂ρ

∂x
ψ (6.6)

with α a real coupling constant. The nonlinear potential associated with this equation is

U [ρ, S] = − α

2h̄

∂S

∂x
ρ2 (6.7)

while the transformation with generator

σ = −αm

2h̄

∫
ρ dx (6.8)

reduces equation (6.6) to the following noncanonical NLSE:

i
∂φ

∂t
= −∂2φ

∂x2
− α

h̄

(
∂S
∂x

+
3αm

8h̄
ρ

)
ρφ. (6.9)

The transformation with generator σ given by equation (6.8) is a particular case of the Kundu
transformation introduced in [25].

(iii) As our third example we consider the canonical NLSE introduced in [26, 27]:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
− λ

m

(
λ

8
ρ +

∂S

∂x

)
ρψ + i

h̄λ

2m

∂ρ

∂x
ψ. (6.10)

The associated potential is given by

U [ρ, S] = −3λ2

8m
ρ3 − λ

2m

∂S

∂x
ρ2 (6.11)

while the generator σ assumes the form

σ = −λ

2

∫
ρ dx. (6.12)
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The evolution equation for the field φ becomes

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
− λ

m

∂S
∂x

ρφ. (6.13)

(iv) As our fourth example we consider the canonical NLSE recently introduced in [28, 29]:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+

κ

m
ρ

(
∂S

∂x

)2

ψ − i
κh̄

2mρ

∂

∂x

(
ρ2 ∂S

∂x

)
ψ. (6.14)

The nonlinear potential associated with equation (6.14) is given by

U [ρ, S] = κ

2m

(
ρ
∂S

∂x

)2

. (6.15)

Although equation (6.14) can be generalized in any spatial dimension, it is easy to verify that
the condition (4.8) is not satisfied in this case; thus we can apply the transformation only to
the one-dimensional case. We perform the transformation generated by

σ = κ

∫
ρ
∂S

∂x
dx (6.16)

and equation (6.14) transforms into

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+

κ

m

ρ

1 + κρ

(
∂S
∂x

)2

φ − κ
h̄2

4m
ρ
∂2 log ρ

∂x2
φ. (6.17)

(v) As a last example of the canonical system we consider the sub-class of DG equations given
by [6]:

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ +

{
α�S − 2β

h̄2

m

[
�ρ

ρ
− 1

2

(∇ρ

ρ

)2
]}

ψ + iα
h̄

2

�ρ

ρ
ψ (6.18)

with associated nonlinear potential

U [ρ, S] = αρ�S + β
h̄2

m

(∇ρ)2

ρ
. (6.19)

The generator σ is now

σ = −mα log ρ (6.20)

while the evolution equation for the field φ becomes

ih̄
∂φ

∂t
= − h̄2

2m
�φ + γ

[
�ρ

ρ
− 1

2

(∇ρ

ρ

)2 ]
φ (6.21)

with γ = mα2 − 2βh̄2/m. This equation is again canonical, with nonlinear potential

Ũ [ρ] = −γ

2

(∇ρ)2

ρ
(6.22)

and can be linearized performing the rescaling S → S
√

2mγ/h̄2 − 1, as noted in [30].

(vi) The most general class of DG equations is noncanonical and takes the form

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ + h̄D′

5∑
i=1

ciRi[ρ, S]ψ + i
h̄

2
DR2[ρ, S]ψ (6.23)

where R1 = ∇ · j/ρ, R2 = �ρ/ρ, R3 = (j/ρ)2, R4 = j · ∇ρ/ρ2, R5 = (∇ρ/ρ)2.
Note that equation (6.18) is obtained when D = α, c1 = −c4 = mα/h̄D′, c3 = 0 and
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c2 = −2c5 = −2βh̄/mD′. The same generator σ given by equation (6.20) defines the
transformation ψ → φ reducing the evolution equation to

ih̄
∂φ

∂t
= − h̄2

2m
�φ +

5∑
i=1

c̃iRi[ρ,S]φ (6.24)

where now the coefficients are given by c̃1 = h̄D′c1 − mD, c̃2 = h̄D′c2, c̃3 = h̄D′c3,
c̃4 = h̄D′c4 + mD, c̃5 = h̄D′ + mD2/2. Note that in [7] a nonlinear transformation was
introduced with generator

σDG = γ (t)

2
log ρ +

1

h̄
[λ(t) − 1]S + θ(t,x) (6.25)

which produces a group of transformations mapping the DG equation into itself. We observe
that, after posing in equation (6.25) θ(t,x) = 0, λ(t) = 1 and γ (t) = 2mβ/h̄, we obtain the
generator σ given by equation (6.20).

(vii) As a second example of noncanonical system we consider the equation

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ iα

(
ψ∗ ∂ψ

∂x
+ qψ

∂ψ∗

∂x

)
ψ (6.26)

with q a real parameter. We note that for q = 1/2, equation (6.26) reduces to the Kaup–
Newell equation [31], while for q = 0 we obtain the Chen–Lee–Liu equation (6.6). Finally,
for q = −1 the nonlinearity in equation (6.26) becomes purely real and the equation coincides
with equation (6.13) obtained previously. The generator

σ = −mα

2h̄
(q + 1)

∫
ρ dx (6.27)

defines a transformation which reduces equation (6.26) to

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
− α

h̄

[
(1 − q)

∂S
∂x

+
1

8
m

α

h̄
(3 − 2q − 5q2)ρ

]
ρφ. (6.28)

In the particular case q = 1 equation (6.28) becomes canonical with nonlinear potential

Ũ [ρ] = mα2

6h̄2 ρ3. (6.29)

(viii) As a final example we consider the Eckaus equation [32] which is a noncanonical NLSE:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
+ iα

∂ρ

∂x
ψ + βρ2ψ. (6.30)

The generator

σ = −mα

h̄

∫
ρ dx (6.31)

defines the transformation reducing equation (6.30) to the well known quintic NLSE:

ih̄
∂φ

∂t
= − h̄2

2m

∂2φ

∂x2
+

(
mα2

2h̄2 + β

)
ρ2φ. (6.32)

Equation (6.32) is a canonical one with nonlinear potential

Ũ [ρ] = 1

3

(
mα2

2h̄2 + β

)
ρ3. (6.33)

In the particular case where β = −mα2/2h̄2 the transformation with generator given by
equation (6.31) linearizes equation (6.30).
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7. Conclusion

In this paper we have considered a class of canonical NLSEs containing complex nonlinearities
and describing U(1)-invariant systems. For these systems we studied the symmetries and the
conserved quantities associated to roto-translations and Galilei invariance.

Subsequently, we introduced a Cole–Hopf-like transformationψ → Uψ , which preserves
the U(1)-invariance of the system and reduces the complex nonlinearity into a real one so that
the continuity equation assumes the standard bilinear form. This transformation generally
does not conserve the canonicity of the system. Extension to noncanonical equations was also
studied.

The general Cole–Hopf-like transformation introduced here allows us to treat in a
unifying scheme several NLSEs already known in the literature, obtaining, in this way, the
transformations introduced by various authors.

Appendix A

In this appendix we recover, by using the Noether theorem [23], the continuity equation
associated with a given symmetry.

Let us consider the action

A =
∫

L dnx dt (A.1)

with Lagrangian

L = LL + LNL (A.2)

where

LL = i
h̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m
|∇ψ |2 (A.3)

is the standard Lagrangian density of the linear Schrödinger theory while

LNL = −U [ρ, S] (A.4)

is a real scalar functional depending on the hydrodynamic fields ρ, S and their spatial
derivatives. The evolution equation for the field ψ is given by

∂A
∂ψ∗ = 0. (A.5)

Taking the functional derivatives, equation (A.5) becomes

∂LL

∂ψ∗ − ∂

∂t

∂LL

∂(∂tψ∗)
− ∂

∂xi

∂LL

∂(∂iψ∗)
+
∑
[k=0]

(−1)kDIk

[
∂LNL

∂(DIkρ)

]
ψ

+ i
h̄

2ρ

∑
[k=0]

(−1)kDIk

[
∂LNL

∂(DIk S)

]
ψ = 0. (A.6)

We compute the variation δεA generated by a one-parameter transformation group. For
simplicity, we assume that the symmetry group acts only on the internal degrees of freedom
of the system. The contributions to δεA, given by the variation of the volume element dnx dt ,
when the symmetry involves the space–time variables, are well known and can be added
successively. Thus, we have
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δεA =
∫ [

δLL

δψ
δεψ +

δLL

δψ∗ δεψ
∗ +

δLNL

δρ
δερ +

δLNL

δS
δεS

]
dnx dt

=
∫ {

∂LL

∂ψ
δεψ +

∂LL

∂(∂tψ)
δε(∂tψ) +

∂LL

∂(∂iψ)
δε(∂iψ)

+
∂LL

∂ψ∗ δεψ
∗ +

∂LL

∂(∂tψ∗)
δε(∂tψ

∗) +
∂LL

∂(∂iψ∗)
δε(∂iψ

∗)

+
∑
[k=0]

[
∂LNL

∂(DIkρ)
δε(DIkρ) +

∂LNL

∂(DIk S)
δε(DIk S)

]}
dnx dt (A.7)

with DIk ≡ ∂k/(∂x
i1
1 · · · xin

n ) and the Einstein convention for the repeated indices is assumed.
In equation (A.7) we have posed

∑
[k=0] ≡ ∑∞

k=0

∑
Ik

, where the second sum is performed on
the multi-index Ik ≡ (i1, i2, . . . , in) with 0 � ip � k,

∑
ip = k. If we use the identity

∂L
∂(∂aφ)

δε(∂aφ) = ∂

∂a

[
∂L

∂(∂aφ)
δεφ

]
− ∂

∂a

[
∂L

∂(∂aφ)

]
δεφ (A.8)

with a ≡ t , i, equation (A.7) becomes

δεA =
∫ {

∂LL

∂ψ
δεψ +

∂

∂t

[
∂LL

∂(∂tψ)
δεψ

]
− ∂

∂t

[
∂LL

∂(∂tψ)

]
δεψ +

∂

∂xi

(
∂LL

∂(∂iψ)
δεψ

)

− ∂

∂xi

[
∂LL

∂(∂iψ)

]
δεψ +

∂LL

∂ψ∗ δεψ
∗ +

∂

∂t

[
∂LL

∂(∂tψ∗)
δεψ

∗
]

− ∂

∂t

[
∂LL

∂(∂tψ∗)

]
δεψ

∗ +
∂

∂xi

[
∂LL

∂(∂iψ∗)
δεψ

∗
]

− ∂

∂xi

[
∂LL

∂(∂iψ∗)

]
δεψ

∗

+
∑
[k=0]

[
∂LNL

∂(DIkρ)
δε(DIkρ) +

∂LNL

∂(DIk S)
δε(DIk S)

]}
dnx dt. (A.9)

For a fixed value of the index k and multi-index Ik , using k times equation (A.8), we have

∂LNL

∂(DIkρ)
δε(DIkρ) =

k∑
[p=0]

(−1)pAIk
Iq

DIq

[
DIp

(
∂LNL

∂(DIkρ)

)
δερ

]
(A.10)

where the coefficient AIk
Iq

= ∏n
r=1 ir !/(lr !mr !),

∑k
[p=0] ≡ ∑k

p=0

∑
Ip

and the multi-indices
Ik = (i1, . . . , in), Ip = (l1, . . . , ln) and Iq = (m1, . . . , mn) are related by ir = lr + mr .

Using equation (A.10), equation (A.9) transforms to

δεA =
∫ {

∂LL

∂ψ
δεψ +

∂

∂t

[
∂LL

∂(∂tψ)
δεψ

]
− ∂

∂t

[
∂LL

∂(∂tψ)

]
δεψ +

∂

∂xi

[
∂LL

∂(∂iψ)
δεψ

]

− ∂

∂xi

[
∂LL

∂(∂iψ)

]
δεψ +

∂LL

∂ψ∗ δεψ
∗ +

∂

∂t

[
∂LL

∂(∂tψ∗)
δεψ

∗
]

− ∂

∂t

[
∂LL

∂(∂tψ∗)

]
δεψ

∗ +
∂

∂xi

[
∂LL

∂(∂iψ∗)
δεψ

∗
]

− ∂

∂xi

[
∂LL

∂(∂iψ∗)

]
δεψ

∗

+
∑
[k=0]

k∑
[p=0]

(−1)pAIk
Iq

DIq

{
DIp

[
∂LNL

∂(DIkρ)

]
δερ + DIp

[
∂LNL

∂(DIk S)

]
δεS

}}
dnx dt.

(A.11)
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After inserting in equation (A.11) the expressions of ∂LNL/∂ψ and ∂LNL/∂ψ
∗ obtained from

equation (A.6) and its conjugate, we finally obtain

δεA =
∫ {

∂

∂t

[
∂LL

∂(∂tψ)
δεψ +

∂LL

∂(∂tψ∗)
δεψ

∗
]

+
∂

∂xi

[
∂LL

∂(∂iψ)
δεψ +

∂LL

∂(∂iψ∗)
δεψ

∗
]

+
∑
[k=1]

k−1∑
[p=0]

(−1)pAIk
Iq

DIq

{
DIp

[
∂LNL

∂(DIkρ)

]
δερ

+ DIp

[
∂LNL

∂(DIk S)

]
δεS

}}
dnx dt. (A.12)

In the presence of a symmetry the variation of the action must vanish and thus, from
equation (A.12), after rearranging the terms, we derive the continuity equation

∂Q
∂t

+ ∇ · F = 0 (A.13)

with charge

Q = ∂LL

∂(∂tψ)
δεψ +

∂LL

∂(∂tψ∗)
δεψ

∗ (A.14)

and flux F

Fj = ∂LL

∂(∂jψ)
δεψ +

∂LL

∂(∂jψ∗)
δεψ

∗ +
∑
[k=0]

k∑
[p=0]

(−1)pBIk
j,Iq

DIq

×
{
DIp

[
∂LNL

∂(Dj,Ikρ)

]
δερ + DIp

[
∂LNL

∂(Dj,Ik S)

]
δεS

}
(A.15)

where Dj,Ik a ≡ ∂jDIk a, with a ≡ ρ, S, and the coefficients B
Ik
j,Iq

= (ij + 1)AIk
Iq
/(mj + 1)f

Iq
j

and f
Iq
j = n − ∑n

r 
=j δ0,mr
. Recall that from the continuity equation the current is defined

modulo the curl of an arbitrary function. This fact was taken into account in the expression of
the current (A.15).

In the following we discuss two important cases. In the first, we suppose that the system
is U(1)-invariant. Using the transformation ψ → ψ exp(iε) where ε is the infinitesimal
generator, we have

δεψ = iεψ δεψ
∗ = −iεψ∗

δερ = 0 δεS = h̄ε.
(A.16)

From equations (A.14) and (A.15) we obtain the expression of the conserved density
Q = ρ and the related current Fi = ji :

ji = ∂iS

m
ρ +

∑
[k=0]

(−1)k

f
Ik+1
i

DIk

[
∂U [ρ, S]

∂(Di,Ik S)

]
. (A.17)

It is trivial to note that equation (A.13) is the continuity equation for the field ψ , where the
current (A.17) assumes a nonstandard expression, due to the presence of the imaginary part of
the nonlinearity in the evolution equation. By taking into account the definition (2.4) of the
functional derivative, equation (A.17) can be also written in the form

ji = ∂iS

m
ρ +

δ

δ(∂iS
)

∫
U [ρ, S] dnx dt (A.18)

modulo a curl of an arbitrary function. Note that equation (A.18) can be obtained directly from
equation (2.7) after adopting the hypothesis that U [ρ, S] depends on the field S only through
its spatial derivatives as required from U(1) symmetry.
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In the second case, we discuss the energy–momentum tensor related to the space–time
translations. Posing xµ → xµ + εµ we have

δεψ = εµ∂µψ δεψ
∗ = εµ∂µψ

∗

δερ = εµ∂µρ δεS = εµ∂µS
(A.19)

with µ = 0, . . . , 3 and ∂0 ≡ ∂t . From equations (A.14) and (A.15) we obtain

T00 = h̄2

2m
|∇ψ |2 + U [ρ, S] (A.20)

T0j = i
h̄

2
(ψ∗∂jψ − ψ∂jψ

∗) (A.21)

Ti0 = − h̄2

2m
(∂iψ

∗∂tψ − ∂iψ∂tψ
∗)

+
∑
[k=0]

k∑
[p=0]

(−1)pBIk
j,Iq

DIq

{
DIp

[
∂U [ρ, S]

∂
(Di,Ik ρ

)]∂tρ + DIp

[
∂U [ρ, S]

∂
(Di,Ik S

)]∂tS
}

(A.22)

Tij = − h̄2

2m

(
∂iψ

∗∂jψ + ∂jψ
∗∂iψ

)
+ δijL

−
∑
[k=0]

k∑
[p=0]

(−1)pBIk
j,Iq

DIq

{
DIp

[
∂U [ρ, S]

∂
(Di,Ik ρ

)]∂jρ + DIp

[
∂U [ρ, S]

∂
(Di,Ik S

)]∂jS
}
. (A.23)

In equations (A.20) and (A.23) we have taken into account the contribution due to the volume
element. Note that the potential U [ρ, S] does not modify the expression of the momentum
density T0j which assumes the same form as in the linear theory. In contrast, U [ρ, S] changes
the expression of the energy density T00, and even more strongly the expression of the flux
densities Tiµ.

Appendix B

Theorem. If U [ρ, S] and F [ρ, S] are two smooth functionals depending on the fields ρ, S

and their spatial derivatives and satisfy the relation

∂

∂S
U [ρ, S] = ∇ · F [ρ, S] (B.1)

the functional U [ρ, S] takes the form

U [ρ, S] = U [ρ, S] + ∇ · G[ρ, S] (B.2)

where U [ρ, S] depends on S only through its derivatives: ∂U/∂S = 0.

Proof. Deriving equation (B.2) with respect to S we obtain

∂U

∂S
= ∂U

∂S
+

∂

∂S
∇ · G = ∂

∂S

∑
[k=0]

[
∂i(DIkρ)

∂Gi

∂(DIkρ)
+ ∂i(DIk S)

∂Gi

∂(DIk S)

]

=
∑
[k=0]

[
∂i(DIkρ)

∂

∂(DIkρ)
+ ∂i(DIk S)

∂

∂(DIk S)

]
∂Gi

∂S
= ∇ · ∂G

∂S
(B.3)

which coincides with equation (B.1) for F = ∂G/∂S.
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Alternatively, expanding the rhs of equation (B.1),

∂U

∂S
=
∑
[k=0]

[
∂i(DIkρ)

∂Fi

∂(DIkρ)
+ ∂i(DIk S)

∂Fi

∂(DIk S)

]
(B.4)

and integrating on the field S, after taking into account that ρ, S, DIkρ and DIk S are independent
quantities, we have

U =
∑
[k=0]

∫ [
∂i(DIkρ)

∂Fi

∂(DIkρ)
+ ∂i(DIk S)

∂Fi

∂(DIk S)

]
dS

=
∑
[k=0]

∂i(DIkρ)

∫
∂Fi

∂(DIkρ)
dS +

∑
[k=1]

∂i(DIk S)

∫
∂Fi

∂(DIk S)
dS

+(∂iS)
∫

∂Fi

∂S
dS

=
∑
[k=0]

∂i(DIkρ)
∂

∂(DIkρ)

∫
Fi dS +

∑
[k=1]

∂i(DIk S)
∂

∂(DIk S)

∫
Fi dS

+(Fi + Ci)∂iS

= ∇ ·
∫

F dS + C · ∇S (B.5)

withCi integration constants not depending on S. Equation (B.5) coincides with equation (B.2)
for G = ∫

F dS and U = C · ∇S. �
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Florjańczyk M and Gagnon L 1996 Phys. Rev. A 54 3764

[11] Petviashvili V I and Sergeev A M 1984 Dokl. Akad. Nauk 276 1380
Petviashvili V I and Sergeev A M 1984 Sov. Phys.–Dokl. 29 49

[12] Malomed B A 1987 Physica D 29 155
Malomed B A and Nepomnyashchy A A 1990 Phys. Rev. A 42 6009

[13] Malomed B A 1991 Phys. Rev. A 44 6954
[14] Shchesnovich V S and Doktorov E V 1999 Physica D 129 115
[15] Facão M and Ferreira M 2001 J. Nonlinear Math. Phys. D 8 112
[16] Bang O, Edmundson D and Królokowski W 1999 Phys. Rev. Lett. 83 5479
[17] Bang O, Berge L and Easmussen J J 1999 Phys. Rev. E 59 4600
[18] Kivshar Y S and Ostrovskaya E A 1999 Preprint arXiv patt-sol/9912008
[19] Bohm D 1951 Phys. Rev. 85 166
[20] Calogero F and Xiaoda J 1991 J. Math. Phys. 32 2703

Calogero F 1992 J. Math. Phys. 33 1257
Calogero F 1993 J. Math. Phys. 34 3197



Cole–Hopf-like transformation for Schrödinger equations containing complex nonlinearities 1959

[21] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[22] Madelung E 1926 Z. Phys. 40 332
[23] Noether E 1918 Invariante variations probleme Nachr. König. Gesellsch. Wiss. Göett Math.-phys. Klasse 235
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